Out of sight, out of mind: Categorization learning and normal aging

    loading  Checking for direct PDF access through Ovid


The present combined EEG and eye tracking study examined the process of categorization learning at different age ranges and aimed to investigate to which degree categorization learning is mediated by visual attention and perceptual strategies. Seventeen young subjects and ten elderly subjects had to perform a visual categorization task with two abstract categories. Each category consisted of prototypical stimuli and an exception. The categorization of prototypical stimuli was learned very early during the experiment, while the learning of exceptions was delayed. The categorization of exceptions was accompanied by higher P150, P250 and P300 amplitudes. In contrast to younger subjects, elderly subjects had problems in the categorization of exceptions, but showed an intact categorization performance for prototypical stimuli. Moreover, elderly subjects showed higher fixation rates for important stimulus features and higher P150 amplitudes, which were positively correlated with the categorization performances. These results indicate that elderly subjects compensate for cognitive decline through enhanced perceptual and attentional processing of individual stimulus features. Additionally, a computational approach has been applied and showed a transition away from purely abstraction-based learning to an exemplar-based learning in the middle block for both groups. However, the calculated models provide a better fit for younger subjects than for elderly subjects. The current study demonstrates that human categorization learning is based on early abstraction-based processing followed by an exemplar-memorization stage. This strategy combination facilitates the learning of real world categories with a nuanced category structure. In addition, the present study suggests that categorization learning is affected by normal aging and modulated by perceptual processing and visual attention.

Related Topics

    loading  Loading Related Articles