Real-world navigation in amnestic mild cognitive impairment: The relation to visuospatial memory and volume of hippocampal subregions


    loading  Checking for direct PDF access through Ovid

Abstract

Spatial disorientation is a frequent symptom in Alzheimer's disease and in mild cognitive impairment (MCI). In the clinical routine, spatial orientation is less often tested with real-world navigation but rather with 2D visuoconstructive tasks. However, reports about the association between the two types of tasks are sparse. Additionally, spatial disorientation has been linked to volume of the right hippocampus but it remains unclear whether right hippocampal subregions have differential involvement in real-world navigation. Yet, this would help uncover different functional roles of the subregions, which would have important implications for understanding the neuronal underpinnings of navigation skills.We compared patients with amnestic MCI (aMCI; n = 25) and healthy elderly controls (HC; n = 25) in a real-world navigation task that engaged different spatial processes. The association between real-world navigation and different visuoconstructive tasks was tested (i.e., figures from the Consortium to Establish a Registry for Alzheimer's Disease; CERAD, the Rey-Osterrieth Complex Figure task; and clock drawing). Furthermore, the relation between spatial navigation and volume of right hippocampal subregions was examined. Linear regression and relative weight analysis were applied for statistical analyses.Patients with aMCI were significantly less able to correctly navigate through a route compared to HC but had comparable map drawing and landmark recognition skills. The association between visuoconstructive tasks and real-world navigation was only significant when using the visuospatial memory component of the Rey figure. In aMCI, more volume of the right hippocampal tail was significantly associated with better navigation skills, while volume of the right CA2/3 region was a significant predictor in HC.Standard visuoconstructive tasks (e.g., the CERAD figures or clock drawing) are not sufficient to detect real-world spatial disabilities in aMCI. Consequently, more complex visuoconstructive tasks (i.e., the Rey figure) should be routinely included in the assessment of cognitive functions in the context of AD. Moreover, in those elderly individuals with impaired complex visuospatial memory, route finding behaviour should be evaluated in detail. Regarding the contribution of hippocampal subregions to spatial navigation, the right hippocampal tail seems to be particularly important for patients with aMCI, while the CA2/3 region appears to be more relevant in HC.HighlightsThe association between 2D visuospatial memory and 3D navigation depends on the complexity of the 2D task in MCI.Only complex 2D visuospatial memory tasks allow a prediction of route-finding behaviour in real life in MCI.Complex 2D visuospatial memory tasks should be routinely included in the cognitive assessment of MCI patients.Healthy controls seem to rely more heavily on the right CA2/3 region of the hippocampus for real-life navigation.Patients with MCI rather recruit the right posterior hippocampus (i.e. the hippocampal tail).

    loading  Loading Related Articles