Propagation of cortical spreading depolarization in the human cortex after malignant stroke

    loading  Checking for direct PDF access through Ovid



To investigate hemodynamic response pattern and spatiotemporal propagation of cortical spreading depolarization in the peri-infarct region of malignant hemispheric stroke.


In this prospective observational case study we used intraoperative laser speckle technology to measure cerebral blood flow in patients with malignant hemispheric stroke. Additionally, postoperative occurrence of cortical spreading depolarization was monitored using a subdural recording strip for electrocorticography and infarct progression was assessed by serial MRI.


In 7 of 20 patients, 19 blood flow changes typical of cortical spreading depolarizations occurred during a 20-minute period. Thirteen events were characterized by increase, 2 by biphasic response, and 4 by decrease of blood flow. Propagation velocity ranged from 1.7 to 9.2 mm/min and propagation area from 0.1 to 4.8 cm2. Intrinsic optical signal alterations preceded and low-frequency vascular fluctuations were suppressed during the hemodynamic responses. A mean number of 56 ± 82 cortical spreading depolarizations per patient was recorded and a mean infarct progression of 30 ± 13 cm3 was detected in 5 of 7 patients.


We visualize the spatiotemporal propagation of spreading depolarizations in the human cerebral cortex intraoperatively. In patients with focal ischemia, multiple cortical spreading depolarizations with either hyperemic or hypoemic flow responses occurred. Our data suggest that, in patients with focal ischemia, cortical spreading depolarizations are associated with both unfavorable and protective hemodynamic responses.

Related Topics

    loading  Loading Related Articles