Genesis of pituitary adenomas: state of the art


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryIn recent years, remarkable progress has been made in the understanding of the pathogenesis of pituitary tumors. Pituitary tumors originate from the uncontrolled proliferation of a single transformed cell in which an initiating event has caused a gain of proliferative function. After the initiation, promoting factors cooperate in the clonal expansion. Common oncogenes, such as ras, are only exceptionally involved. The only activating mutations identified so far are gsp mutations causing the constitutive activation of cAMP pathway. However, gsp-positive adenomas are not associated to a more aggressive tumoral phenotype. The oncogenic potential of gsp mutations is limited by a more rapid degradation of the mutant Gsα with respect to the wild-type protein, and by a faster removal of cAMP due to increased phosphodiesterase activity. Estrogen-inducible gene sequences with transforming properties (pituitary tumor-transforming gene (PTTG)) have been identified in human pituitary tumors. Human pituitary tumor-transforming gene (hPTTG) is involved both in early pituitary tumorigenesis, as it causes in vitro and in vivo transformation acting as a transcription activator, and in tumor progression, as it regulates the production of basic fibroblast growth factor (bFGF), a potent activator of angiogenesis and mitogenesis. Moreover, a role of cyclin D1 in pituitary tumorigenesis is emerging. The allelic loss of loci for unknown oncosuppressor genes are currently under investigation, while an exceedingly limited role for menin gene and RB1 has been demonstrated for sporadic pituitary tumors. Abnormal methylation that predisposing toward genetic instability may favor the allelic loss or the reduced expression of oncosuppressor genes, is also an emerging field of investigation. Several promoting factors, including the excessive action of physiological stimulators, the defective action of inhibitors, the susceptibility to respond to inappropriate stimuli and the locally produced growth factors, help in tumor progression. The study of homeobox genes that intervene in pituitary cell differentiation may help in expanding our knowledge in pituitary tumor cell genealogy.

    loading  Loading Related Articles