Mechanisms of cell death by deprivation of depolarizing conditions during cerebellar granule neurons maturation


    loading  Checking for direct PDF access through Ovid

Abstract

Cerebellar granule cells (CGC) cultured under 5mM KCl (K5) undergo apoptosis after 5 days in vitro (DIV). CGC death is reduced by chronic treatment with 25 mM KCl (K25) or NMDA. Also, when CGC cultured for 6–8 DIV in K25 are transferred to a K5 medium, cells die apoptotically. Moreover, Bcl-2 and Bcl-xL protect neurons from apoptosis, while Bax and Bcl-xS may act as proapototic proteins. It is suggested that these members of the Bcl-2 family may be involved in the cytochrome-c (cyt-c) release to the cytosol. Cytochrome-c is able to form a complex with other proteins to activate a cascade of proteases. In this work, we found that Bcl-2 levels in K5 cells did not show any change during 2–7 days in vitro (DIV); but cells grown with NMDA and K25 displayed an increase (55% approximately) of Bcl-2 from 4 DIV, as compared to control. Under these conditions, Bax levels showed a tendency to decrease with age under control cells and NMDA/K25 induced a reduction of approximately 10% in Bax levels from 4 DIV. On the other hand, in cells maintained in K25 during 7 DIV and then switched to a K5 medium, the levels of Bax showed a consistent decrease (30% after 8 h). Under these conditions, the Bcl-2 levels did not show any significant change after 24 h. Cytochrome-c levels were unaffected under K5, NMDA and K25 and only a marginal increase of cytochrome-c in the cytosol was detected at 6 h after switching. We also found that caspase-9 was only activated under K25-deprivation meanwhile caspase-3 was involved in both protocols. These results suggest that the Bcl-2 family members, caspases activation and cytochrome-c release are involved in CGC death induced by K5 and their participation in this process could be different depending on neuronal maturation in culture.

    loading  Loading Related Articles