Antiapoptotic effects of roscovitine in cerebellar granule cells deprived of serum and potassium: a cell cycle-related mechanism

    loading  Checking for direct PDF access through Ovid


Neuronal apoptosis may be partly due to inappropriate control of the cell cycle. We used serum deprivation as stimulus and reduced potassium from 25 to 5 mM (S/K deprivation), which induces apoptosis in cerebellar granule neurons (CGNs), to evaluate the direct correlation between re-entry in the cell cycle and apoptosis. Roscovitine (10 μM), an antitumoral drug that inhibits cyclin-dependent kinase 1 (cdk1), cdk2 and cdk5, showed a significant neuroprotective effect on CGNs deprived of S/K. S/K deprivation induced the expression of cell cycle proteins such as cyclin E, cyclin A, cdk2, cdk4 and E2F-1. It also caused CGNs to enter the S phase of the cell cycle, measured by a significant incorporation of BrdU (30% increase over control cells), which was reduced in the presence of roscovitine (10 μM). On the other hand, roscovitine modified the expression of cytochrome c (Cyt c), Bcl-2 and Bax, which are involved in the apoptotic intrinsic pathway induced by S/K deprivation. We suggest that the antiapoptotic effects of roscovitine on CGNs are due to its anti-proliferative efficacy and to an action on the mitochondrial apoptotic mechanism.

    loading  Loading Related Articles