Role for the Pineal and Melatonin in Glucose Homeostasis: Pinealectomy Increases Night-Time Glucose Concentrations

    loading  Checking for direct PDF access through Ovid


The effects of melatonin on glucose metabolism are far from understood. In rats, the biological clock generates a 24-h rhythm in plasma glucose concentrations, with declining concentrations in the dark period. We hypothesized that, in the rat, melatonin enhances the dark signal of the biological clock, decreasing glucose concentrations in the dark period. We measured 24-h rhythms of plasma concentrations of glucose and insulin in pinealectomized rats fed ad libitum and subjected to a scheduled feeding regimen with six meals equally distributed over the light/dark cycle and compared them with previous data of intact rats. Pinealectomy dampened the amplitude of the 24-h rhythm in plasma glucose concentrations in rats fed ad libitum, and abolished it completely in rats subjected to the scheduled feeding regimen, while plasma insulin concentrations did not change under both conditions. Pinealectomy abolished the nocturnal decline in plasma glucose concentrations irrespective of whether rats were fed ad libitum or subjected to the scheduled feeding regimen. Melatonin replacement restored 24-h mean plasma glucose concentrations in pinealectomized rats that were subjected to the scheduled feeding regimen but, interestingly, it did not restore the 24-h rhythm. Melatonin treatment also resulted in higher meal-induced insulin responses, probably mediated via an increased sensitivity of the β-cells. Taken together, our data demonstrate that the pineal hormone, melatonin, influences both glucose metabolism and insulin secretion from the pancreatic β-cell. The present study also demonstrates that removal of the pineal gland cannot be compensated by mimicking plasma melatonin concentrations only.

    loading  Loading Related Articles