Diverse Effects of Stress and Additional Adrenocorticotropic Hormone on Digitalis-Like Compounds in Normal and Nude Mice

    loading  Checking for direct PDF access through Ovid


Digitalis-like compounds (DLC) are steroidal hormones that are synthesized in, and released from, the adrenal gland, whose regulation may be directed by the hypothalamic-pituitary-adrenal (HPA) axis. Increasing evidence points to antitumour properties of these compounds and we hypothesized that the establishment of tumours in athymic nude mice may be facilitated by an abnormal synthesis or secretion of DLC. To explore this hypothesis, DLC concentrations were determined in the plasma, and in adrenal and hypothalamic tissues of nude compared to normal mice under basal conditions, and 30 min after a stress stimulus (i.p. injection of 100 μl saline) with or without additional adrenocorticotropic hormone (ACTH) 1 μg/per animal. Simultaneously, plasma corticosterone and serum adrenocorticotropic hormone (ACTH) concentrations were analysed. The basal DLC concentrations were similar in the plasma and the hypothalamus of both strains, whereas the basal adrenal DLC concentration was significantly lower in the nude mice compared to normal mice. The stress stimulus induced in normal mice a significant increase in DLC concentrations in the adrenal gland, the plasma and the hypothalamus. However, in nude mice, it caused an increase only in the adrenal gland and the hypothalamus, whereas the plasma DLC concentration was not affected. In both strains, the administration of ACTH in addition to injection stress did not provoke a further increase in DLC concentrations while inducing a significant increase in plasma corticosterone concentration. Regardless of the applied stimulus, the nude mice expressed significant lower DLC concentrations in the adrenal gland and the plasma compared to normal mice. The low basal adrenal DLC concentration in nude mice and their impaired DLC response towards stress- and ACTH stimulation both support an involvement of DLC in tumorigenesis.

    loading  Loading Related Articles