The herbicide glyphosate causes behavioral changes and alterations in dopaminergic markers in male Sprague-Dawley rat

    loading  Checking for direct PDF access through Ovid


HighlightsRepeated glyphosate exposure causes hypoactivity.Repeated glyphosate exposure decreases accumbal D1-dopamine receptors.Acute glyphosate exposure decreases striatal extracellular DA levels and DA release.Glyphosate (Glyph) is the active ingredient of several herbicide formulations. Reports of Glyph exposure in humans and animal models suggest that it may be neurotoxic. To evaluate the effects of Glyph on the nervous system, male Sprague-Dawley rats were given six intraperitoneal injections of 50, 100, or 150 mg Glyph/kg BW over 2 weeks (three injections/week). We assessed dopaminergic markers and their association with locomotor activity. Repeated exposure to Glyph caused hypoactivity immediately after each injection, and it was also apparent 2 days after the last injection in rats exposed to the highest dose. Glyph did not decrease monoamines, tyrosine hydroxylase (TH), or mesencephalic TH+ cells when measured 2 or 16 days after the last Glyph injection. In contrast, Glyph decreased specific binding to D1 dopamine (DA) receptors in the nucleus accumbens (NAcc) when measured 2 days after the last Glyph injection. Microdialysis experiments showed that a systemic injection of 150 mg Glyph/kg BW decreased basal extracellular DA levels and high-potassium-induced DA release in striatum. Glyph did not affect the extracellular concentrations of 3,4-dihydroxyphenylacetic acid or homovanillic acid. These results indicate that repeated Glyph exposure results in hypoactivity accompanied by decreases in specific binding to D1-DA receptors in the NAcc, and that acute exposure to Glyph has evident effects on striatal DA levels. Additional experiments are necessary in order to unveil the specific targets of Glyph on dopaminergic system, and whether Glyph could be affecting other neurotransmitter systems involved in motor control.

    loading  Loading Related Articles