Control of Chaotic Motion in a Spinning Spacecraft with a Circumferential Nutational Damper

    loading  Checking for direct PDF access through Ovid


Control of chaotic vibrations in a simplified model of a spinning spacecraft with a circumferential nutational damper is achieved using two techniques. The control methods are implemented on a realistic spacecraft parameter configuration which has been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. Such a torque, in practice, may arise in the platform of a dual-spin spacecraft under malfunction of the control system or from an unbalanced rotor or from vibrations in appendages. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently could have disastrous affects on its operation. The two control methods, recursive proportional feedback (RPF) and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamical systems. Each technique is outlined and the effectiveness of the two strategies in controlling chaotic motion exhibited by the present system is compared and contrasted. Numerical simulations are performed and the results are studied by means of time history, phase space, Poincaré map, Lyapunov characteristic exponents and bifurcation diagrams.

Related Topics

    loading  Loading Related Articles