Oligodendroglial Development: New Roles for Chromatin Accessibility

    loading  Checking for direct PDF access through Ovid

Abstract

In the central nervous system, the generation of mature oligodendrocytes from their progenitors is a critical step in myelination, which is essential for normal nervous system function. Thus, understanding the regulatory mechanism underlying oligodendroglial development is of great importance, especially for the development of new therapeutic strategies that promote remyelination in demyelinating diseases, such as multiple sclerosis. Previous studies have focused on genetic patterns and revealed a network of cell signaling pathways and related transcription factors involved in oligodendroglial lineage development. Recently, epigenetic regulation, which refers to regulation of gene expression by adjusting the environment of the genes has been shown to play a profound role during oligodendroglial development. In this review, we summarize the recent data demonstrating the effects of chromatin modification and remodeling in regulating oligodendroglial development and discuss the use of high-throughput analysis and bio-informatics in future studies.

Related Topics

    loading  Loading Related Articles