Real-time solution measurement of RAD51- and RecA-mediated strand assimilation without background annealing

    loading  Checking for direct PDF access through Ovid

Abstract

RAD51 is the central strand exchange recombinase in somatic homologous recombination, providing genomic stability and promoting resistance to DNA damage. An important tool for mechanistic studies of RAD51 is the D-loop or strand assimilation assay, which measures the ability of RAD51-coated single-stranded DNA (ssDNA) to search for, invade and exchange ssDNA strands with a homologous duplex DNA target. As cancer cells generally overexpress RAD51, the D-loop assay has also emerged as an important tool in oncologic drug design programs for targeting RAD51. Previous studies have adapted the traditional gel-based D-loop assay by using fluorescence-based substrates, which in principle allow for use in high-throughput screening platforms. However, these existing D-loop methods depend on linear oligonucleotide DNA duplex targets, and these substrates enable recombinase-independent ssDNA annealing that can obscure the recombinase-dependent strand assimilation signal. This compelled us to fundamentally re-design this assay, using a fluorescent target substrate that consists of a covalently closed linear double-hairpin dsDNA. This new microplate-based method represents a fast, inexpensive and non-radioactive alternative to existing D-loop assays. It provides accurate kinetic analysis of strand assimilation in high-throughput and performs well with human RAD51 andEscherichia coliRecA protein. This advance will aid in both mechanistic studies of homologous recombination and drug screening programs.

Related Topics

    loading  Loading Related Articles