Transcriptional inhibition and mutagenesis induced byN-nitroso compound-derived carboxymethylated thymidine adducts in DNA

    loading  Checking for direct PDF access through Ovid

Abstract

N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O4-carboxymethylthymidine (O4-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O4-CMdT, site-specifically positioned in the transcribed strand, to investigate how these lesions compromise the flow of genetic information during transcription. Our results revealed that both N3-CMdT and O4-CMdT substantially inhibited DNA transcription mediated by T7 RNA polymerase or human RNA polymerase II in vitro and in human cells. In addition, we found that N3-CMdT and O4-CMdT were miscoding lesions and predominantly directed the misinsertion of uridine and guanosine, respectively. Our results also suggested that these carboxymethylated thymidine lesions may constitute efficient substrates for transcription-coupled nucleotide excision repair in human cells. These findings provided important new insights into the biological consequences of the carboxymethylated DNA lesions in living cells.

Related Topics

    loading  Loading Related Articles