An Economic Evaluation of First-Trimester Genetic Sonography for Prenatal Detection of Down Syndrome

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

To determine 1) the diagnostic accuracy requirements of first-trimester genetic sonography from the cost-benefit point of view and 2) the economic impact of first-trimester genetic sonography for the United States on the basis of the accuracy of previously published studies.

Methods

A cost-benefit equation was developed on the basis of the hypothesis that the cost of chorionic villus sampling (CVS) in pregnant women with advanced maternal age (at least 35 years old) should be at least equal to the cost of genetic sonography with CVS used only for those with abnormal ultrasound results. The components of the equation included the diagnostic accuracy of genetic ultrasound (sensitivity and specificity for detecting Down syndrome), the costs of the CVS package and genetic ultrasound, and the lifetime cost of Down syndrome cases.

Results

First-trimester genetic sonography was found to be beneficial if the overall sensitivity for detecting Down syndrome was greater than 70%, and even then, the cost-benefit ratio depended on the corresponding false-positive rate. The required minimum ultrasound sensitivity varied according to the maternal age-specific prevalence of Down syndrome and ranged between 40% (for women 35 years old) to 96% (for women 44 years old). Of eight published cohorts using nuchal translucency thickness for genetic sonography, five had accuracies of genetic ultrasound compatible with net benefits.

Conclusion

The benefits of first-trimester genetic sonography depend on its diagnostic accuracy. First-trimester genetic sonography has the potential for annual savings of 22 million dollars in the United States.

Related Topics

    loading  Loading Related Articles