Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946–2013)

    loading  Checking for direct PDF access through Ovid



To examine the risk of death from leukaemia in relation to occupational chronic low-level external and internal radiation exposure in a cohort of 58 972 former German uranium miners with mortality follow-up from 1946 to 2013.


The red bone marrow (RBM) dose from low-linear energy transfer (LET) (mainly external γ-radiation) and high-LET (mainly radon gas) radiation was estimated based on a job-exposure matrix and biokinetic/dosimetric models. Linear excess relative risks (ERR) and 95% CIs were estimated via Poisson regression for chronic lymphatic leukaemia (CLL) and non-CLL.


The mean cumulative low-LET and high-LET RBM doses among the 86% radiation-exposed workers were 48 and 9 mGy, respectively. There was a positive non-significant dose-response for mortality from non-CLL (n=120) in relation to low-LET (ERR/Gy=2.18; 95% CI −0.41 to 6.37) and high-LET radiation (ERR/Gy=16.65; 95% −1.13 to 46.75). A statistically significant excess was found for the subgroup chronic myeloid leukaemia (n=31) in relation to low-LET radiation (ERR/Gy=7.20; 95% CI 0.48 to 24.54) and the subgroup myeloid leukaemia (n=99) (ERR/Gy=26.02; 95% CI 2.55 to 68.99) for high-LET radiation. The ERR/Gy tended to be about five to ten times higher for high-LET versus low-LET radiation; however, the CIs largely overlapped. Results indicate no association of death from CLL (n=70) with either type of radiation.


Our findings indicate an increased risk of death for specific subtypes from non-CLL in relation to chronic low-LET and high-LET radiation, but no such relation for CLL.

Related Topics

    loading  Loading Related Articles