1601b Noninvasive biomonitoring of 3 groups of nanomaterials workers with elevated markers of oxidative stress and inflammation

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

The studies of workers exposed to nanomaterials are rather rare; however, the data are urgently needed, as the experimental data bring suspicion on deleterious effect by inhalation. The aim was to examine non-invasively workers exposed to varied materials, containing nanoparticles, and compare the results of the same markers of oxidation of lipids, nucleic acids and proteins, in addition to spirometry and fractional exhaled nitrogen oxide (FeNO).

Methods

Three groups of workers were examined and compared with comparable control groups. They included:

Methods

Aerosol exposure in nanocomposites was measured using offline and online aerosol instruments: Berner Low-Pressure Impactor, Scanning Mobility Particle Sizer, Aerodynamic Particle Sizer, Condensation Particle Counter and Optical Particle Sizer.

Methods

Following markers were analysed in the exhaled breath condensate (EBC) by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS): malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-isoProstaglandinF2α, C6-C13, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine and proinflammatory leukotrienes LTB4, LTC4, LTE4, LTD4. Fractional exhaled nitric oxide (FeNO) and spirometry were measured.

Results

The exposure to inert dusts exposure did not exceed allowed gravimetric limits for occupational exposure. However, all workers had elevated markers of oxidative stress, as compared to the controls. LTB4 and cysteinyl LTE4 were most involved inflammation markers. Most elevated markers were seen in nanoTiO2 workers, lower effect was seen both in the nano Fe oxides and nanocomposites exposed workers. On the other hand, spirometry and FeNO did not show any significant impairments.

Conclusions

Non-invasive biomonitoring using markers of oxidative stress, LTB4 and LTE4 may be most useful and could be recommended biomarkers for preventive examinations and monitoring of workers with occupational exposure to nanoparticles.

Acknowledgement

Progres Q25/1LF, Q296/1LF, 43/17/RPZP and CSFP503/12/G147.

Related Topics

    loading  Loading Related Articles