Niche partitioning at multiple scales facilitates coexistence among mosquito larvae

    loading  Checking for direct PDF access through Ovid

Abstract

A theoretical dichotomy in community ecology distinguishes between mechanisms that stabilize species coexistence and those that cause neutral drift. Stable coexistence is predicted to occur in communities where competing species have niche-partitioning mechanisms that reduce interspecific competition. Neutral communities are predicted to be structured by stochastic processes that are not influenced by species identity, but that may be influenced by priority effects and dispersal limitation. Recent developments have suggested that neutral interactions may be more common at local scales, while niche structuring may be more common at larger scales. We tested for mechanisms that could promote either stable coexistence or neutral drift in a bromeliad-dwelling mosquito community by evaluating A) if a hypothesized within-bromeliad niche partitioning mechanism occurs in the community, B) if this mechanism correlates with local species co-occurrence patterns, and C) if patterns of coexistence at the larger (metacommunity) scale were consistent with those at the local scale. We found that mosquitoes in this community do partition space within containers, and that species with the strongest potential for competition co-occurred least. Species with overlapping spatial niches minimized co-occurrence by specialising in bromeliads of differing sizes, effectively changing the scale at which they coexist. In contrast, we found no evidence to support neutral dynamics in mosquito communities at either scale. In this community, a niche-based mechanism that is predicted to stabilize species coexistence explains co-occurrence patterns within and among bromeliads.

Related Topics

    loading  Loading Related Articles