DEGA/AMIGO-2, a leucine-rich repeat family member, differentially expressed in human gastric adenocarcinoma: effects on ploidy, chromosomal stability, cell adhesion/migration and tumorigenicity

    loading  Checking for direct PDF access through Ovid

Abstract

We have discovered DEGA, a novel cDNA differentially expressed in human gastric adenocarcinomas. The DEGA gene product contains a signal peptide, five leucine-rich repeat motifs and a single IgG, and transmembrane domain, suggesting its residence on the plasma membrane. Transfection of 293 cells with a DEGA-GFP fusion construct confirmed its cell surface localization. Although the cytosolic portion of the DEGA gene product does not contain known protein domains, approximately one-fifth of these residues are either a serine or a threonine, suggesting that DEGA may play a role in signal transduction. BLAST searches revealed DEGA to be an exact match to AMIGO-2, a recently identified, but functionally uncharacterized protein related to AMIGO, a leucine-rich repeat containing cell adhesion molecule implicated in axon tract development. In this report, we show that DEGA/AMIGO-2 mRNA is differentially expressed in ∼45% of tumor versus normal tissue from gastric adenocarcinoma patients. Stable expression of a DEGA/AMIGO-2 antisense construct in the gastric adenocarcinoma cell line, AGS, led to altered morphology, increased ploidy, chromosomal instability, decreased cell adhesion/migration, and a nearly complete abrogation of tumorigenicity in nude mice. These findings suggest a potential etiologic role for DEGA/AMIGO-2 in gastric adenocarcinoma.

Related Topics

    loading  Loading Related Articles