Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively

    loading  Checking for direct PDF access through Ovid

Abstract

The exact role of a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) and the underlying mechanism of its involvement in tumor metastasis have not been established. We have now demonstrated that overexpression of ADAMTS-1 promotes pulmonary metastasis of TA3 mammary carcinoma and Lewis lung carcinoma cells and that a proteinase-dead mutant of ADAMTS-1 (ADAMTS-1E/Q) inhibits their metastasis, indicating that the prometastatic activity of ADAMTS-1 requires its metalloproteinase activity. Overexpression of ADAMTS-1 in these cells promoted tumor angiogenesis and invasion, shedding of the transmembrane precursors of heparin-binding epidermal growth factor (EGF) and amphiregulin (AR), and activation of the EGF receptor and ErbB-2, while overexpression of ADAMTS-1E/Q inhibited these events. Furthermore, we found that ADAMTS-1 undergoes auto-proteolytic cleavage to generate the NH2- and COOH-terminal cleavage fragments containing at least one thrombospondin-type-I-like motif and that overexpression of the NH2-terminal ADAMTS-1 fragment and the COOH-terminal ADAMTS-1 fragment can inhibit pulmonary tumor metastasis. These fragments also inhibited Erk1/2 kinase activation induced by soluble heparin-binding EGF and AR. Taken together, our results suggest that the proteolytic status of ADAMTS-1 determines its effect on tumor metastasis, and that the ADAMTS-1E/Q and the ADAMTS-1 fragments likely inhibit tumor metastasis by negatively regulating the availability and activity of soluble heparin-binding EGF and AR.

Related Topics

    loading  Loading Related Articles