Targeting inhibition of K-ras enhances Ad.mda-7-induced growth suppression and apoptosis in mutant K-ras colorectal cancer cells

    loading  Checking for direct PDF access through Ovid


Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a cancer-specific, growth-suppressing and apoptosis-inducing gene with broad-spectrum anti-tumor activity. However, when administered by means of a replication-incompetent adenovirus, Ad.mda-7, several colorectal carcinoma cell lines are resistant to its antiproliferative and antisurvival effects. We have presently endeavored to determine if K-ras mutations, present in ∼40-50% of colorectal cancers and which may mediate resistance to chemotherapy and radiotherapy, represent a predisposing genetic factor mitigating reduced sensitivity to Ad.mda-7. To suppress ras expression, three structurally different replication-incompetent adenoviral vectors were engineered that express (1) an intracellular, neutralizing single-chain antibody (scAb) to p21 ras (Ad.K-ras scAb), (2) an antisense (AS) K-ras gene (Ad.K-ras AS) or (3) both mda-7/IL-24 and a K-ras AS gene in a single bipartite virus (Ad.m7.KAS). Simultaneous inhibition of K-ras and expression of mda-7/IL-24 enhanced killing of colorectal carcinoma cells with mutated K-ras, but not with wild-type K-ras. The extent of killing depended on the degree of K-ras downregulation, with Ad.K-ras AS being generally more efficient than Ad.K-ras scAb in combination with Ad.mda-7. These findings support an effective dual-combinatorial approach for the therapy of colorectal cancers that employs a unique cancer-specific suppressor gene (mda-7/IL-24) with targeted inhibition of oncogene (ras) expression.

Related Topics

    loading  Loading Related Articles