Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer

    loading  Checking for direct PDF access through Ovid

Abstract

Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide ‘degron’ from hypoxiainducible factor-1α, which binds to the Von -Hippel-Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-α (ERα; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERα in a proteasomedependent manner. Protac-B inhibited the proliferation of ERα-dependent breast cancer cells by inducing G1 arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERα expression. Similarly, Protac-A treatment of androgendependent prostate cancer cells induced G1 arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERα and AR, respectively.

Oncogene (2008) 27, 7201-7211; doi:10.1038/onc.2008.320; published online 15 September 2008

Related Topics

    loading  Loading Related Articles