Cyclin E drives human keratinocyte growth into differentiation

    loading  Checking for direct PDF access through Ovid

Abstract

Human epidermis is continuously exposed to environmental mutagenic hazard and is the most frequent target of human cancer. How the epidermis coordinates proliferation with differentiation to maintain homeostasis, even in hyperproliferative conditions, is unclear. For instance, overactivation of the proto-oncogene MYC in keratinocytes stimulates differentiation. Here we explore the cell cycle regulation as proliferating human keratinocytes commit to terminal differentiation upon loss of anchorage or overactivation of MYC. The S-phase of the cell cycle is deregulated as mitotic regulators are inhibited in the onset of differentiation. Experimental inhibition of mitotic kinase cdkl or kinases of the mitosis spindle checkpoint Aurora B or Polo-like Kinase, triggered keratinocyte terminal differentiation. Furthermore, hyperactivation of the cell cycle by overexpressing the DNA replication regulator Cyclin E induced mitosis failure and differentiation. Inhibition of Cyclin E by shRNAs attenuated the induction of differentiation by MYC. In addition, we present evidence that Cyclin E induces DNA damage and the p53 pathway. The results provide novel clues for the mechanisms committing proliferative keratinocytes to differentiate, with implications for tissue homeostasis maintenance, HPV amplification and tumorigenesis.

Related Topics

    loading  Loading Related Articles