Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction

    loading  Checking for direct PDF access through Ovid

Abstract

Epithelial-to-mesenchymal transition (EMT) is closely linked to conversion of early-stage tumours into invasive malignancies. Many signalling pathways are involved in EMT, but the key regulatory kinases in this important process have not been clearly identified. Protein kinase CK2 is a multi-subunit protein kinase, which, when overexpressed, has been linked to disease progression and poor prognosis in various cancers. Specifically, overexpression of CK2α in human breast cancers is correlated with metastatic risk. In this article, we show that an imbalance of CK2 subunits reflected by a decrease in the CK2β regulatory subunit in a subset of breast tumour samples is correlated with induction of EMT-related markers. CK2β-depleted epithelial cells displayed EMT-like morphological changes, enhanced migration, and anchorage-independent growth, all of which require Snail1 induction. In epithelial cells, Snail1 stability is negatively regulated by CK2 and GSK3β through synergistic hierarchal phosphorylation. This process depends strongly on CK2β, thus confirming that CK2 functions upstream of Snail1. In primary breast tumours, CK2β underexpression also correlates strongly with expression of EMT markers, emphasizing the link between asymmetric expression of CK2 subunits and EMT in vivo. Our results therefore highlight the importance of CK2β in controlling epithelial cell plasticity. They show that CK2 holoenzyme activity is essential to suppress EMT, and that it contributes to maintaining a normal epithelial morphology. This study also suggests that unbalanced expression of CK2 subunits may drive EMT, thereby contributing to tumour progression.

Related Topics

    loading  Loading Related Articles