hPso4/hPrp19: a critical component of DNA repair and DNA damage checkpoint complexes

    loading  Checking for direct PDF access through Ovid

Abstract

Genome integrity is vital to cellular homeostasis and its forfeiture is linked to deleterious consequences—cancer, immunodeficiency, genetic disorders and premature aging. The human ubiquitin ligase Pso4/Prp19 has emerged as a critical component of multiple DNA damage response (DDR) signaling networks. It not only senses DNA damage, binds double-stranded DNA in a sequence-independent manner, facilitates processing of damaged DNA, promotes DNA end joining, regulates replication protein A (RPA2) phosphorylation and ubiquitination at damaged DNA, but also regulates RNA splicing and mitotic spindle formation in its integral capacity as a scaffold for a multimeric core complex. Accordingly, by virtue of its regulatory and structural interactions with key proteins critical for genome integrity—DNA double-strand break (DSB) repair, DNA interstrand crosslink repair, repair of stalled replication forks and DNA end joining—it fills a unique niche in restoring genomic integrity after multiple types of DNA damage and thus has a vital role in maintaining chromatin integrity and cellular functions. These properties may underlie its ability to thwart replicative senescence and, not surprisingly, have been linked to the self-renewal and colony-forming ability of murine hematopoietic stem cells. This review highlights recent advances in hPso4 research that provides a fascinating glimpse into the pleiotropic activities of a ubiquitously expressed multifunctional E3 ubiquitin ligase.

Related Topics

    loading  Loading Related Articles