Progranulin and granulin-like protein as novel VEGF-independent angiogenic factors derived from human mesothelioma cells

    loading  Checking for direct PDF access through Ovid

Abstract

Malignant mesothelioma is an aggressive tumor arising from the mesothelial cells of serous membranes and is associated with tumor angiogenesis, which is a prerequisite for tumor progression. Vascular endothelial growth factors (VEGFs) including VEGF-A have a crucial role in tumor angiogenesis. However, bevacizumab, a monoclonal antibody to VEGF-A, has recently been reported not to improve the progression-free survival of patients with malignant mesothelioma. Cell culture supernatant contains extracellular components such as serum, which can mask the existence of unknown cell-derived factors in the supernatant and make it difficult to detect the factors by subsequent protein analysis. We tried using serum-free culture for human mesothelioma cell lines, NCI-H28, NCI-H2452 and NCI-H2052, and only NCI-H2052 cells adapted to serum-free culture. We found that serum-free culture supernatant derived from NCI-H2052 cells induces the formation of capillary-like tube structures (tube formation) in threedimensional culture, in which endothelial cells sandwiched between two layers of collagen or embedded in collagen are incubated with various angiogenic inducers. However, neither neutralization of VEGF-A nor RNA interference of VEGF receptor 2 (VEGFR2) suppressed the supernatant-induced tube formation. Using mass spectrometry, we identified a total of 399 proteins in the supernatant, among which interleukin-8 (IL-8), growth-regulated α-protein, midkine, IL-18, IL-6, hepatoma-derived growth factor, clusterin and granulin (GRN), also known as progranulin (PGRN), were included as a candidate protein inducing angiogenesis. Neutralizing assays and RNA interference showed that PGRN, but not the above seven candidate proteins, caused the supernatantinduced tube formation. We also found that NCI-H28 and NCI-H2452 cells express PGRN. Furthermore, we demonstrate that not only PGRN but also GRN-like protein have an important role in the supernatant-induced tube formation. Thus, mesothelioma-derived GRNs induce VEGF-independent angiogenesis.

Related Topics

    loading  Loading Related Articles