Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics

    loading  Checking for direct PDF access through Ovid


Translationally controlled tumor protein (TCTP) has been implicated in the regulation of apoptosis, DNA repair and drug resistance. However, the underlying molecular mechanisms are poorly defined. To better understand the molecular mechanisms underlying TCTP involved in cellular processes, we performed an affinity purification-based proteomic profiling to identify proteins interacting with TCTP in human cervical cancer HeLa cells. We found that a group of proteins involved in DNA repair are enriched in the potential TCTP interactome. Silencing TCTP by short hairpin RNA in breast carcinoma MCF-7 cells leads to the declined repair efficiency for DNA double-strand breaks on the GFP-Pem1 reporter gene by homologous recombination, the persistent activation and the prolonged retention of γH2AX and Rad51 foci following ionizing radiation. Reciprocal immunoprecipitations indicated that TCTP forms complexes with Rad51 in vivo, and the stability maintenance of Rad51 requires TCTP in MCF-7 cells under normal cell culture conditions. Moreover, inactivation of TCTP by sertraline treatment enhances UVC irradiation-induced apoptosis in MCF-7 cells, and causes sensitization to DNA-damaging drug etoposide and DNA repair inhibitor olaparib. Thus, we have identified an important role of TCTP in promoting DNA double-stand break repair via facilitating DNA homologous recombination processes and highlighted the great potential of TCTP as a drug target to enhance conventional chemotherapy for cancer patients with high levels of TCTP expression.

Related Topics

    loading  Loading Related Articles