Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold

    loading  Checking for direct PDF access through Ovid

Abstract

Objective.

The aim of the study was to evaluate 2 types of collagen scaffold for gingival regeneration.

Study Design.

Two types of collagen scaffolds, CS-pH7.4 and CS-pH3.0, were prepared by processing atelocollagen at pH 7.4 or 3.0, respectively, followed by dehydrothermal treatment. Gingival wounds with sizes of 4 × 6 mm (rectangle) or 6 mm diameter (circle) were made with buccal incisions in beagle dogs. The defective area was surgically covered with the CS-pH7.4, CS-pH3.0, or no scaffold (control). Gingival regeneration was assessed by monitoring the differences in the lengths of the epithelial and submucosal tissues at the wound site and the normal site. Histopathologic assessments were performed by 4 evaluators independently; statistical significance was evaluated by using the Wald test.

Results.

Significantly higher recovery of epithelial and submucosal tissues, which, in turn, resulted in recovery of gum thickness, was observed in gingival wounds treated with the CS-pH7.4 compared with that in the control. CS-pH3.0 treatment also resulted in higher gingival regeneration compared with the control; however, the effects were more pronounced in wounds treated with the CS-pH7.4. CS-pH7.4-treated wounds showed better gingival regeneration compared with the control and CS-pH3.0-treated wounds, even after adjusting for interevaluator differences using a linear mixed model.

Conclusions.

CS-pH7.4 is a promising scaffold for gingival tissue regeneration.

Related Topics

    loading  Loading Related Articles