Itraconazole inhibits TNF-α-induced CXCL10 expression in oral fibroblasts

    loading  Checking for direct PDF access through Ovid



Itraconazole (ICZ) has a broad spectrum of antifungal activity including a wide range of Candida spp. TNF-α, an inflammatory cytokine associated with Th1-mediated oral inflammatory disease, enhances inflammatory mediators, such as CXCR3-agonistic chemokines including CXCL10. We examined the anti-inflammatory potential of ICZ against TNF-α-induced chemokines in oral fibroblasts.


We investigated the effects of ICZ on mRNA expressions of various TNF-α-induced chemokines in immortalized oral keratinocytes (RT7) and oral fibroblasts (GT1) using quantitative PCR analysis. Subsequently, the effects of ICZ and fluconazole (FLZ) on TNF-α-induced CXCL10 proteins in GT1 and primary fibroblasts were examined using enzyme-linked immunosorbent assays (ELISA). The effect of ICZ on signal transduction protein phosphorylation involved in CXCL10 production from TNF-α-stimulated GT1 was examined by western blotting.


ICZ inhibited TNF-α-induced CXCL10 mRNA in GT1, but not RT7. Although ICZ did not affect TNF-α-induced IL-8 mRNA, the mRNAs of TNF-α-induced CXCR3-agonistic chemokines such as CXCL9 and CXCL11 were inhibited by ICZ in GT1. TNF-α-induced CXCL10 protein production in GT1 and primary fibroblasts was inhibited by ICZ, but not FLZ. Finally, ICZ inhibited TNF-α-induced phosphorylation of c-JUN, which is related to CXCL10 production by TNF-α-stimulated GT1.


ICZ may be useful as therapy for Th1-mediated oral inflammatory disease.

Related Topics

    loading  Loading Related Articles