Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution

    loading  Checking for direct PDF access through Ovid



Over 39000 species of arthropods parasitize humans, domestic animals and wildlife. Despite their medical, veterinary and economic importance, most aspects of the population genetics and evolution of the vast majority of parasitic arthropods are poorly understood. Mitochondrial genomes are a rich source of markers for studies of population genetics and evolution. These markers include (1) nucleotide sequences of each of the 37 mitochondrial genes and non-coding regions; (2) concatenated nucleotide sequences of 2 or more genes; and (3) genomic features, such as gene duplications, gene rearrangements, and changes in gene content and secondary structures of RNAs. To date, the mitochondrial genomes of over 700 species of multi-cellular animals have been sequenced entirely, however, only 24 of these species are parasitic arthropods. Of the mitochondrial genome markers, only the nucleotide sequences of 4 mitochondrial genes, cox1, cob, rrnS and rrnL, have been well explored in population genetic and evolutionary studies of parasitic arthropods whereas the sequences of the other 33 genes, and various genomic features have not. We review current knowledge of the mitochondrial genomes of parasitic arthropods, summarize applications of mitochondrial genes and genomic features in population genetic and evolutionary studies, and highlight prospects for future research.

Related Topics

    loading  Loading Related Articles