A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies

    loading  Checking for direct PDF access through Ovid


Glomerular epithelial cell (podocyte) injury is characterized by foot process retraction, slit diaphragm reorganization, and degradation of podocyte-specific proteins. However, the mechanisms underlying podocyte injury are largely unknown. The ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a key modulator of ubiquitin modification in neurons. Like neurons, UCH-L1 expression was associated with an undifferentiated status in cultured human podocytes, whereas differentiation and arborization decreased UCH-L1 and monoUb expression. Inhibition of UCH-L1 induced time and concentration-dependent process formation with α-actinin-4 distribution to the cell membrane and processes. An immunohistochemical approach was used to evaluate whether UCH-L1 expression was associated with podocyte injury in 15 different human glomerular diseases. Whereas normal kidneys expressed no UCH-L1 and little ubiquitin, a subset of human glomerulopathies associated with podocyte foot process effacement (membranous nephropathy, SLE class V, FSGS)de novoexpressed UCH-L1 in podocyte cell bodies, nuclei, and processes. Interestingly, UCH-L1 expression correlated with podocyte ubiquitin content and internalization of the podocyte-specific proteins nephrin and α-actinin-4. In contrast, minimal change glomerulonephritis, a reversible disease, demonstrated minimal UCH-L1 and ubiquitin expression with intact α-actinin-4 but internalized nephrin. Glomerular kidney diseases typically not associated with foot process effacement (SLE class IV, ANCA+ necrotizing GN, amyloidosis, IgA nephritis) expressed intermediate to no UCH-L1 and ubiquitin. These studies show a role for UCH-L1 and ubiquitin modification in podocyte differentiation and injury. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

    loading  Loading Related Articles