Development of a cancer-marker activated enzymatic switch from the herpes simplex virus thymidine kinase

    loading  Checking for direct PDF access through Ovid


Discovery of new cancer biomarkers and advances in targeted gene delivery mechanisms have made gene-directed enzyme prodrug therapy (GDEPT) an attractive method for treating cancer. Recent focus has been placed on increasing target specificity of gene delivery systems and reducing toxicity in non-cancer cells in order to make GDEPT viable. To help address this challenge, we have developed an enzymatic switch that confers higher prodrug toxicity in the presence of a cancer marker. The enzymatic switch was derived from the herpes simplex virus thymidine kinase (HSV-TK) fused to the CH1 domain of the p300 protein. The CH1 domain binds to the C-terminal transactivation domain (C-TAD) of the cancer marker hypoxia inducible factor 1α. The switch was developed using a directed evolution approach that evaluated a large library of HSV-TK/CH1 fusions using a negative selection for azidothymidine (AZT) toxicity and a positive selection for dT phosphorylation. The identified switch, dubbed TICKLE (Trigger-Induced Cell-Killing Lethal-Enzyme), confers a 4-fold increase in AZT toxicity in the presence of C-TAD. The broad substrate specificity exhibited by HSV-TK makes TICKLE an appealing prospect for testing in medical imaging and cancer therapy, while establishing a foundation for further engineering of nucleoside kinase protein switches.

Related Topics

    loading  Loading Related Articles