Characterization of Early Activation Events in Cord Blood B Cells after Stimulation with T Cell-Independent Activators

    loading  Checking for direct PDF access through Ovid

Abstract

ABSTRACT

Human neonates are immunologically immature, particularly in their humoral antibody responses to T cell-independent antigens, as exemplified by their increased susceptibility to infections with polysaccharide-encapsulated bacteria. To clarify the mechanism(s) underlying the unresponsiveness of neonates to polysaccharide antigens, we used an in vitro model with neonatal cord blood cells that has been shown to mimic surface Ig-dependent signaling in the adult by T cell-independent antigens. We studied the ability of cord blood human B cells to become activated after ligation of their surface Ig by unconjugated anti-Ig, dextran-conjugated anti-Ig, andStaphylococcus aureus Cowan A1, and compared their response with that of adult B cells. After the addition of nanogram concentrations of anti-Ig-dextran, neonatal cord blood B cells proliferated at levels comparable to that observed with adult B cells. The majority of cord blood B cells showed a marked rise in intracellular calcium, increased surface expression of human leukocyte antigen DR, and an increase in cell size. Direct activation of protein kinase C by phorbol esters in neonatal B cells led to cellular proliferation, and when combined with anti-Ig, a synergistic effect on proliferation was observed. These data suggest that the unresponsiveness of human neonates to polysaccharide antigens does not represent an inability of these antigens to induce early activation events in circulating B cells.

Related Topics

    loading  Loading Related Articles