Placental 11β-HSD2 Gene Expression at Birth Is Inversely Correlated With Growth Velocity in the First Year of Life After Intrauterine Growth Restriction

    loading  Checking for direct PDF access through Ovid



Intrauterine growth restriction (IUGR) is associated with an increased risk for short stature and diseases in adulthood thought to be inflicted by fetal programming. We hypothesized that placental endocrine systems involved in perinatal growth might also play a role in postnatal growth after IUGR. In a prospective controlled multicenter study, placental gene expression of IGF-binding protein-1 (IGFBP-1), leptin and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) were measured in 14 IUGR infants and 15 children born appropriate for gestational age (AGA) proven by serial ultrasound examinations. Postnatally, IUGR infants experienced a significantly higher growth velocity than AGA neonates (at 1 y: p = 0.001). Gene expression of 11β-HSD2 at birth correlated positively with birth length (r = 0.55, p = 0.04) and inversely with growth velocity in the first year of life (r = −0.69, p = 0.01) in the IUGR, but not in the AGA group. There was no correlation between gene expression of placental IGFBP-1, leptin and birth weight, length and growth velocity during the first year of life. AGA infants showed significantly higher concentrations of cortisone in venous cord blood after birth (p = 0.02) as a surrogate of a higher 11β-HSD2 activity in the fetoplacental unit. In conclusion, placental 11β-HSD2 gene expression might predict postnatal growth in IUGR.

Related Topics

    loading  Loading Related Articles