Differential functional connectivity within an emotion regulation neural network among individuals resilient and susceptible to the depressogenic effects of early life stress

    loading  Checking for direct PDF access through Ovid



Early life stress (ELS) is a significant risk factor for depression. The effects of ELS exposure on neural network organization have not been differentiated from the effect of depression. Furthermore, many individuals exposed to ELS do not develop depression, yet the network organization patterns differentiating resiliency versus susceptibility to the depressogenic effects of ELS are not clear.


Women aged 18–44 years with either a history of ELS and no history of depression (n = 7), a history of ELS and current or past depression (n = 19), or a history of neither ELS nor depression (n = 12) underwent a resting-state 3-T functional magnetic resonance imaging (fMRI) scan. An emotion regulation brain network consisting of 21 nodes was described using graph analyses and compared between groups.


Group differences in network topology involved decreased global connectivity and hub-like properties for the right ventrolateral prefrontal cortex (vlPFC) and decreased local network connectivity for the dorsal anterior cingulate cortex (dACC) among resilient individuals. Decreased local connectivity and increased hub-like properties of the left amygdala, decreased hub-like properties of the dACC and decreased local connectivity of the left vlPFC were observed among susceptible individuals. Regression analyses suggested that the severity of ELS (measured by self-report) correlated negatively with global connectivity and hub-like qualities for the left dorsolateral PFC (dlPFC).


These preliminary results suggest functional neural connectivity patterns specific to ELS exposure and resiliency versus susceptibility to the depressogenic effects of ELS exposure.

Related Topics

    loading  Loading Related Articles