Endogenous metabolites that are substrates of organic anion transporter's (OATs) predict methotrexate clearance

    loading  Checking for direct PDF access through Ovid


Variable pharmacokinetics of high-dose-methotrexate (MTX) is responsible for severe toxicities. Unpredictable overexposure still occurs during some courses despite having controlled the main factors known to play a role in its elimination. The aim of our study was to evaluate whether the urine metabolomic profile measured at the time of MTX administration is predictive of the drug's clearance and/or of treatment-related toxicity. We analyzed the urine content of endogenous metabolites before MTX administration in a cohort of adult patients treated for lymphoid malignancies. Individual MTX clearance (MTXCL) was estimated from population pharmacokinetic analyses of therapeutic drug monitoring data. We determined the urine metabolite content by gas chromatography-mass spectrometry (GC–MS) and applied Partial Least Square (PLS) analysis to assess the relationship between the urine metabolome and MTXCL. External validation was applied to evaluate the performances of the PLS model. We used orthogonal partial least squares discriminant analysis (OPLS-DA) to distinguish patients with normal or delayed elimination, and patients with or without toxicity. Sixty-two patients were studied. We obtained a very good prediction of individual MTX clearance using a set of 28 metabolites present in patient urine at baseline. The mean prediction error and precision were −0.36% and 21.4%, respectively, for patients not included in the model. The model included a set of endogenous organic anions, of which the tubular secretion depends on organic anion transporter (OAT) function. Our analyses did not allow us to discriminate between patients with or without delayed elimination or those who did or did not experience toxicity. Urinary metabolomics can be informative about an individual's ability to clear MTX. More broadly, it paves the way for the development of a biomarker of tubular secretion, easily measurable from endogenous substances.

Related Topics

    loading  Loading Related Articles