Antibacterial activity and pharmacokinetic profile of a promising antibacterial agent: 14-O-[(4-Amino-6-hydroxy-pyrimidine-2-yl)thioacetyl] mutilin

    loading  Checking for direct PDF access through Ovid

Abstract

A new pleuromutilin derivative, 14-O-[(4-Amino-6-hydroxy-pyrimidine-2-yl)thioacetyl] mutilin (APTM), has been synthesized and proved most potent antibacterial agent in in vitro assays, suggesting that further development of this compound may lead to a promising antibacterial drug. In this study, we further evaluated the cytotoxicity, antibacterial efficacy and the pharmacokinetic profile of APTM. In BRL 3A cells, 50% of viability was obtained when 363 μg/mL of APTM was used, while retapamulin and tiamulin fumarate needed 49 and 28 μg/mL, respectively, to reach this viability. Compared to tiamulin fumarate, APTM showed higher inhibition efficacy and faster bactericidal activity against S. aureus and lower 50% effective dose (ED50) in mice after a lethal challenge with methicillin-resistant Staphylococcus aureus (MRSA). Docking experiment for APTM showed a similar binding pattern with tiamulin. Furthermore, a simple, accurate and sensitive HPLC method for the determination of APTM in rabbit plasma was developed and successfully applied to pharmacokinetic study, in which the half life (t1/2), clearance rate (Cl) and the area under the plasma concentration–time curve (AUC0→∞) were 3.37 h, 0.35 L/h/kg and 70.68 μg·h/m, respectively.

Related Topics

    loading  Loading Related Articles