Venlafaxine reverses chronic fatigue-induced behavioral, biochemical and neurochemical alterations in mice

    loading  Checking for direct PDF access through Ovid

Abstract

A state of chronic fatigue was produced in mice by subjecting them to forced swim inside a rectangular jar of specific dimensions everyday for a 6 min session for 15 days. Immobility period was recorded on alternate days. The effect of venlafaxine, a dual reuptake inhibitor of serotonin and norepinephrine was evaluated in this murine model of chronic fatigue. Venlafaxine was administered daily and on the days of testing, it was injected 30 min before forced swim session. On the 16th day i.e. 24 h after the last dose of venlafaxine, various behavioral, biochemical and neurotransmitter estimations in the brain were carried out. There was a significant increase in immobility period in vehicle treated mice on successive days, the maximum immobility score reaching on the 7th day and sustained till 15th day. Behavioral parameters revealed hyperlocomotion, anxiety response, muscle incoordination, hyperalgesia and memory deficit. Biochemical analysis showed a significant increase in lipid peroxidation, nitrite and myeloperoxidase levels and a decrease in the reduced glutathione (GSH) levels in brain homogenates. Further, there was a decrease in adrenal ascorbic acid following chronic forced swim. The neurotransmitter estimations in the brain samples revealed a decrease in norepinephrine, serotonin and dopamine levels on chronic exposure to forced swim for 15 days. Daily treatment with venlafaxine (8 and 16 mg/kg, i.p.) for 15 days produced a significant reduction in immobility period and reversed various behavioral, biochemical and neurotransmitter alterations induced by chronic fatigue. Venlafaxine could be of therapeutic potential in the treatment of chronic fatigue.

Related Topics

    loading  Loading Related Articles