Short-term erythrosine B-induced inhibition of the brain regional serotonergic activity suppresses motor activity (exploratory behavior) of young adult mammals

    loading  Checking for direct PDF access through Ovid

Abstract

Previous studies showed that repeated ingestion of erythrosine B (artificial food color) developed behavioral hyperactivity, but nothing is known about its single administration effect as well as the neurochemical (s) involvement. The present study provides evidence that a single higher dosage (10, 100 or 200 mg/kg, p.o.) of erythrosine administration to young adult male rats reduced motor activity (MA) maximally at 2 h and brain regional (medulla-pons, hippocampus and hypothalamus) serotonergic activity (measuring steady-state levels of 5-HT and 5-HIAA, pargyline-induced 5-HT accumulation and 5-HIAA declination rate and 5-HT receptor binding) under similar experimental condition. The degree of erythrosine-induced inhibition of both MA and brain regional serotonergic activity was dosage dependent. Lower dosage (1 mg/kg, p.o.) did not affect either of the above. Erythrosine (100 or 200 mg/kg, p.o.)-induced MA suppression was also observed in the presence of specific MAO-A inhibitor, clorgyline (5 mg/kg, i.p.) or MAO-B inhibitor, deprenyl (5 mg/kg, i.p.); but their co-application (5 mg/kg, i.p., each) effectively prevented the erythrosine-induced motor suppression. Altogether these results suggest that a single higher dosage of erythrosine (10–200 mg/kg, p.o.) may reduce MA by reducing serotonergic activity with modulation of central dopaminergic activity depending on the brain regions.

Related Topics

    loading  Loading Related Articles