Evaluation of the immunomodulatory effect of melatonin on the T-cell response in peripheral blood from systemic lupus erythematosus patients


    loading  Checking for direct PDF access through Ovid

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antinuclear autoantibodies. In addition, the involvement of CD4+ T-helper (Th) cells in SLE has become increasingly evident. Although the role of melatonin has been tested in some experimental models of lupus with inconclusive results, there are no studies evaluating the melatonin effect on cells from patients with SLE. Therefore, the aim of this study was to analyse the role of in vitro administered melatonin in the immune response of peripheral leukocytes from treated patients with SLE (n = 20) and age- and sex-matched healthy controls. Melatonin was tested for its effect on the production of key Th1, Th2, Th9, Th17 and innate cytokines. The frequency of T regulatory (Treg) cells and the expression of FOXP3 and BAFF were also explored. Our results are the first to show that melatonin decreased the production of IL-5 and to describe the novel role of melatonin in IL-9 production by human circulating cells. Additionally, we highlighted a two-faceted melatonin effect. Although it acted as a prototypical anti-inflammatory compound, reducing exacerbated Th1 and innate responses in PHA-stimulated cells from healthy subjects, it caused the opposite actions in immune-depressed cells from patients with SLE. Melatonin also increased the number of Treg cells expressing FOXP3 and offset BAFF overexpression in SLE patient cells. These findings open a new field of research in lupus that could lead to the use of melatonin as treatment or cotreatment for SLE.

    loading  Loading Related Articles