A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules

    loading  Checking for direct PDF access through Ovid

Abstract

Summary

To study cellular morphogenesis genetically, we isolated loss-of-function mutants of Arabidopsis thaliana, designated ibo1. The ibo1 mutations cause local outgrowth in the middle of epidermal cells of the hypocotyls and petioles, resulting in the formation of a protuberance. In Arabidopsis, the hypocotyl epidermis differentiates into two alternate cell files, the stoma cell file and the non-stoma cell file, by a mechanism involving TRANSPARENT TESTA GLABRA1 (TTG1) and GLABRA2 (GL2). The ectopic protuberances of the ibo1 mutants were preferentially induced in the non-stoma cell files, which express GL2. TTG1-dependent epidermal patterning is required for protuberance formation in ibo1, suggesting that IBO1 functions downstream from epidermal cell specification. Pharmacological and genetic analyses demonstrated that ethylene promotes protuberance formation in ibo1, implying that IBO1 acts antagonistically to ethylene to suppress radial outgrowth. IBO1 is identical to NEK6, which encodes a Never In Mitosis A (NIMA)-related protein kinase (Nek) with sequence similarity to Neks involved in microtubule organization in fungi, algae, and animals. The ibo1-1 mutation, in which a conserved Glu residue in the activation loop is substituted by Arg, completely abolishes its kinase activity. The intracellular localization of GFP-tagged NEK6 showed that NEK6 mainly accumulates in cytoplasmic spots associated with cortical microtubules and with a putative component of the γ-tubulin complex. The localization of NEK6 is regulated by the C-terminal domain, which is truncated in the ibo1-2 allele. These results suggest that the role of NEK6 in the control of cellular morphogenesis is dependent on its kinase action and association with the cortical microtubules.

Related Topics

    loading  Loading Related Articles