Magnesium Transporter 5plays an important role in Mg transport for male gametophyte development inArabidopsis

    loading  Checking for direct PDF access through Ovid



During anther development the male gametophyte develops inside the locule and the tapetal cells provide all nutrients for its development. Magnesium Transporter 5 (MGT5) is a member of the MGT family and has dual functions of Mg export and import. Here, we show that male gametophyte mitosis and intine formation are defective in a mgt5 mutant. The transient expression of GFP-MGT5 revealed that MGT5 is localized in the plasma membrane. These findings suggest that in the male gametophyte MGT5 plays a role in importing Mg from the locule and that Mg is essential for male gametophyte development. The expression of MGT5 in the knockout ABORTED MICROSPORES (AMS) mutant (AMS being an essential regulator of tapetum) is tremendously reduced. Chromatin immunoprecipitation and mobility shift assay experiments demonstrated that AMS can directly bind the promoter of MGT5. An immunoelectron microscopy assay revealed that MGT5-His is localized to the plasma membrane of the tapetum. These findings suggest that AMS directly regulates MGT5 in the tapetum and thus induces export of Mg into the locule. The mgt5 plant exhibits severe male sterility while the expression of MGT5 under the tapetum-specific promoter A9 partly rescued mgt5 fertility. mgt5 fertility was restored under high-Mg conditions. These findings suggest that the mgt5 tapetum still has the ability to export Mg and that a sufficient supply of Mg from the tapetum can improve the importation of Mg in the mgt5 male gametophyte. Therefore, MGT5 plays an important role in Mg transport from the tapetum to the microspore.

Significance Statement

The tapetum layer in anthers is required for transporting nutrients to the developing male gametophytes. Here, we show that mutants in MGT5, encoding a magnesium transporter, are male sterile, indicating the importance of magnesium transport from the tapetum to the developing male gametophytes.

Related Topics

    loading  Loading Related Articles