Mortality and Growth of Trees in Peat-swamp and Heath Forests in Central Kalimantan After Severe Drought

    loading  Checking for direct PDF access through Ovid


Lowland forests in Central Kalimantan, Indonesian Borneo, are endangered by land conversion and the increasing frequency of severe drought. Knowledge of the tolerance of tropical trees to drought is urgent for the management of these lowland habitats. The short-term effects of drought on tree demography (mortality and growth) were investigated in an ever-wet riparian peat-swamp forest and a heath forest on coarse sandy soil after the 1997 El Niño Southern Oscillation (ENSO) event. This drought was unusually severe because little rain fell during the following rainy season. However, forest-wide mortality following the drought (1997–1999) was not critically high in the peat-swamp (6.13% yr−1) or heath (4.26% yr−1) forest. In both forests, standing trees frequently died during the dry season following the drought. The riparian peat-swamp forest was not flooded until 1998, after the prolonged drought in 1997. The hummock–hollow microtopography resulted in differential mortality of peat-swamp trees. On tall hummocks, standing death increased two-fold (4.99% yr−1) during the dry season, whereas uprooting decreased by one-third (0.85% yr−1) during the following rainy season. In contrast, tree growth was not affected by hummock height. Common canopy species were concentrated on tall hummocks and died standing more often than did understory species found in hollows, indicating species-specific mortality after the drought. The large stand basal area relative to the forest-wide growth rate in diameter suggested less resilience to drought by peat-swamp (45.6 m2 ha−1 and 0.0186 ln[cm] yr−1) than heath (27.9 m2 ha−1 and 0.0232 ln[cm] yr−1) forest. A single severe drought did not cause dramatic changes in the peat-swamp and heath forests; however, an increasing frequency of droughts similar in severity to that of the 1997 ENSO event may have the potential to alter the community structure and dynamics, leading to a consistent decline in Bornean lowland forests.

Related Topics

    loading  Loading Related Articles