Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons

    loading  Checking for direct PDF access through Ovid

Abstract

The percentage germination of chickpea seeds (Cicer arietinum L.cv. PBG-1)) gradually decreased with increasing concentration of NaCl in the growth medium and was completely inhibited with 200 mM NaCl. In the presence of 75 mM NaCl, only 51% of the seeds germinated. Gibberellic acid (GA3)) and kinetin at 6 µM concentration induced the maximum increase in % germination and seedling growth under salt stress. However, IAA further inhibited both the germination and growth of stressed seedlings. The reduction in amylase activity in cotyledons of stressed seedlings was partially reversed with GA3 and kinetin whereas IAA did not show any positive effect. GA3 was more effective than kinetin in enhancing the reduced germination and seedling growth of chickpea seeds along with amylase activity in cotyledons under NaCl induced saline conditions. The reduced uptake of radiolabelled 14C sucrose by cotyledons and its reduced distribution in the shoots and roots of stressed seedlings was increased with addition of GA3 in the medium. Cotyledonary amylase was separated into amylase 1 and amylase 2 by sephadex G 150 column chromatography. The reduced activities of both amylase 1 and amylase 2 in cotyledons under salt stress was returned to near normal levels with GA3 and there was also an increase in starch utilization, resulting in its lower concentration in cotyledons of GA3-supplemented stressed cotyledons.

Related Topics

    loading  Loading Related Articles