A Neural Population Model for Visual Pattern Detection

    loading  Checking for direct PDF access through Ovid

Abstract

Pattern detection is the bedrock of modern vision science. Nearly half a century ago, psychophysicists advocated a quantitative theoretical framework that connected visual pattern detection with its neurophysiological underpinnings. In this theory, neurons in primary visual cortex constitute linear and independent visual channels whose output is linked to choice behavior in detection tasks via simple read-out mechanisms. This model has proven remarkably successful in accounting for threshold vision. It is fundamentally at odds, however, with current knowledge about the neurophysiological underpinnings of pattern vision. In addition, the principles put forward in the model fail to generalize to suprathreshold vision or perceptual tasks other than detection. We propose an alternative theory of detection in which perceptual decisions develop from maximum-likelihood decoding of a neurophysiologically inspired model of population activity in primary visual cortex. We demonstrate that this theory explains a broad range of classic detection results. With a single set of parameters, our model can account for several summation, adaptation, and uncertainty effects, thereby offering a new theoretical interpretation for the vast psychophysical literature on pattern detection.

Related Topics

    loading  Loading Related Articles