Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress

    loading  Checking for direct PDF access through Ovid


The aim of this study was to determine the impact of probiotic feeding and chronic heat stress on meat quality, total lipid and phospholipid contents, lipid oxidation, antioxidant capacity, and heat shock protein abundance of broiler breast muscle. A total of 240 male broilers (5 birds per pen) were subjected to 4 treatments consisting of a 2 × 2 factorial design. Broilers were kept at 21-32-21°C for 10 h daily (heat stress, HS) or 21°C (thermoneutral condition) and fed a regular diet or the diet mixed with probiotic (250 ppm of Sporulin containing 3 strains of Bacillus subtilis). A total of 48 broilers (12 birds/treatment) were harvested at 46 d. Neither HS nor probiotic had substantial impacts on water-holding capacity, shear force, and color characteristics. HS induced lipid oxidation as increased 2-thiobarbituric acid reactive substances (TBARS), in which probiotic feeding decreased TBARS value (P = 0.002) and phospholipid contents (P = 0.0033) in breast muscle of HS broilers. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was increased with HS (P < 0.0001), but no significant impact of probiotic supplementation was found. Neither probiotic nor HS affected catalase activity, but superoxide dismutase and glutathione peroxidase activities were lower in HS broilers compared to thermoneutral controls (P < 0.0001) and in probiotics-fed broilers (P < 0.0001) compared to their counterparts. In addition, a significant interaction between probiotic and HS was found at glutathione peroxidase activities, in which breast muscle of broilers fed probiotic at thermoneutral condition showed the highest activity (P < 0.05). Regarding heat shock protein (HSP) determination, HS slightly increased the levels of both HSP70 (P = 0.08) and HSP27 (P = 0.05), but no significant impacts of probiotic supplementation were found. Our results indicate that probiotic feeding could improve breast muscle weight without adverse impacts on meat quality attributes, as well as alleviate oxidative deterioration of breast muscle of broilers undergoing heat stress.

    loading  Loading Related Articles