Insulin Promotes Adipose-Derived Stem Cell Differentiation after Fat Grafting

    loading  Checking for direct PDF access through Ovid



Adipose-derived stem cells are used to enhance fat graft survival. However, their mechanism of action when grafted is controversial. The grafted cells can be replaced by connective tissue or survive at the recipient site and differentiate. Insulin is a powerful agent used to induce their differentiation to adipocytes. The purpose of this study was to elucidate the fate of grafted adipose-derived stem cells in nonvascularized fat grafts with or without insulin.


Fat was harvested from a female human donor who had undergone reduction mammaplasty. The authors also isolated and cultured adipose-derived stem cells expressing green fluorescent protein from transgenic Sprague-Dawley rats. Injection of free fat graft, the adipose-derived stem cells, phosphate-buffered saline, and insulin was performed on the four paravertebral points of the back of each mouse (n = 30) as follows: group A (control group) received adipose tissue and phosphate-buffered saline; group B received adipose tissue and adipose-derived stem cells; group C received adipose tissue, adipose-derived stem cells, and phosphate-buffered saline; and group D received adipose tissue, adipose-derived stem cells, and insulin. Green fluorescent protein expression was evaluated using an in vivo imaging system. The volume of transplanted fat was evaluated at 8 weeks after graft with six histologic parameters. The fat graft was immunostained with green fluorescent protein, 4′,6-diamidino-2-phenylindole, and perilipin. Statistical analysis was performed using a one-way analysis of variance test.


The fat graft volume was significantly higher in group D (p < 0.05). Histologic examination revealed reduced fibrosis and increased cysts, vacuoles, integrity, and vascularity in group D. The green fluorescent protein and perilipin co–positive area was more apparent in group D compared with groups B and C.


Insulin could enhance the survival and differentiation of adipose-derived stem cells in nonvascularized fat grafts.

Related Topics

    loading  Loading Related Articles