Double-factor preimplantation genetic diagnosis: monogenic and cytogenetic diagnoses analyzing a single blastomere

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

Enhancing implantation rates in preimplantation genetic diagnosis (PGD) cycles is still a challenging aspect to address. As aneuploidy can be one of the factors influencing the low implantation rates obtained, the aim of this work was to combine monogenic analysis with comprehensive aneuploidy screening (double factor) in order to transfer the selected (healthy and euploid) embryos in the same in-vitro fertilization (IVF) cycle.

Method

In the present double-factor PGD (DF-PGD) approach, a single blastomere was biopsied from each embryo, and the whole genome amplification DNA product obtained was successfully used for both monogenic analysis and metaphase comparative genomic hybridization cytogenetic screening. The developed DF-PGD was applied to 62 embryos from seven families at risk for monogenic-inherited diseases in a total of seven IVF-DF-PGD cycles.

Results

While 68.2% of the diagnosed embryos were healthy for the monogenic diseases, only 43.3% of them were chromosomally normal considering aneuploidies and/or segmental chromosome imbalances. Six out of seven families had transferrable embryos according to DF-PGD results. Two healthy babies were born from the 11 selected embryo transfers.

Conclusion

In families at risk for monogenic diseases, the DF-PGD is a useful tool to select healthy and potentially viable embryos for transfer, according to their chromosome complement. © 2015 John Wiley & Sons, Ltd.

Related Topics

    loading  Loading Related Articles