Combined Use of Carboxyl-Directed Protein Pegylation and Vector-Mediated Blood-Brain Barrier Drug Delivery System Optimizes Brain Uptake of Brain-Derived Neurotrophic Factor Following Intravenous Administration

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Peptide drug delivery to the brain requires optimization of (a) plasma pharmacokinetics and (b) blood-brain barrier (BBB) permeability. In the present studies, plasma pharmacokinetics are improved with protein pegylation and BBB transport is facilitated with the use of vector-mediated drug delivery using the OX26 monoclonal antibody (MAb) to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the BBB in vivo.

Methods

A conjugate of OX26 and streptavidin (SA), designated OX26/SA, was prepared in parallel with the carboxyl-directed pegylation of brain-derived neurotrophic factor (BDNF). A novel bifunctional polyethyleneglycol (PEG) was used in which a hydrazide (Hz) was attached at one end and a biotin moiety was attached to the other end. This allowed for conjugation of BDNF-PEG-biotin to OX26/SA.

Results

The brain uptake of BDNF-PEG-biotin was increased following conjugation to OX26/SA to a level of 0.144 ± 0.004% injected dose per g brain and a BBB permeability-surface area product of 2.0 ± 0.2 μL/min/g.

Conclusions

These studies demonstrate that peptide drug delivery to the brain can be achieved with advanced formulation of protein-based therapeutics. The formulation is intended to (a) minimize rapid systemic clearance of the peptide, and (b) allow for vector-mediated drug delivery through the BBB in vivo. Following this dual formulation, the brain uptake of a neurotrophin such as BDNF achieves a value that is approximately 2-fold greater than that of morphine, a neuroactive small molecule.

Related Topics

    loading  Loading Related Articles