Local and Interweight Spectra of Completely Regular Codes and of Perfect Colorings

    loading  Checking for direct PDF access through Ovid

Abstract

We introduce notions of local and interweight spectra of an arbitrary coloring of a Boolean cube, which generalize the notion of a weight spectrum. The main objects of our research are colorings that are called perfect. We establish an interrelation of local spectra of such a coloring in two orthogonal faces of a Boolean cube and study properties of the interweight spectrum. Based on this, we prove a new metric property of perfect colorings, namely, their strong distance invariance. As a consequence, we obtain an analogous property of an arbitrary completely regular code, which, together with his neighborhoods, forms a perfect coloring.

Related Topics

    loading  Loading Related Articles