Heligmosomoides polygyrusantigens inhibit the intrinsic pathway of apoptosis by overexpression of survivin and Bcl-2 protein in CD4 T cells

    loading  Checking for direct PDF access through Ovid

Abstract

Many laboratory studies and epidemiological observations confirm that nematodes prevent some immune-mediated diseases. The development of immunologically well-defined laboratory models of intestinal nematode infection has allowed significant advances to be made in understanding the immunological basis of effector mechanisms operating during infection under controlled laboratory conditions. The Heligmosomoides polygyrus-mouse system is used for studies of parasite immunomodulation. H. polygyrus causes a chronic, asymptomatic intestinal infection and effectively maintains both local and systemic tolerance to reduce allergic and autoimmune inflammation. However, exposure of mice to H. polygyrus antigen reduced spontaneous and glucocorticoid-induced apoptosis of CD4- positive T cells in mesenteric lymph node (MLN). In this study we evaluate the proliferation, cytokine secretion, cell cycle progression and expression of apoptosis related genes in MLN CD4 T cells of uninfected and H. polygyrus infected mice ex vivo and in vitro after restimulation with parasite excretory secretory antigen (ESAg), somatic antigen (SAg) and fraction 9 (F9Ag) of somatic antigen. For the first time we explain the influence of H. polygyrus antigens on the intrinsic pathway of apoptosis. We found that the proliferation provoked by fraction 9 and inhibition of apoptosis was dependent on a low Bax/Bcl-2 ratio, dramatical upregulation of survivin, D1 cyclin, P-glycoprotein, and loss of p27Kip1 protein with inhibition of active caspase-3 but not caspase-8.

Related Topics

    loading  Loading Related Articles